

Figure 1: Side panel showing

three open documents, one of

which is in focus, and four un-

opened documents that (in this

case) all relate to the focal

document

Relating Documents via User Activity: The Missing Link

Elin Rønby Pedersen
1

Google, Inc.

Mountain View, CA 94043

elinp@google.com

David W. McDonald

University of Washington

Seattle, WA 98195

dwmc@u.washington.edu

ABSTRACT
In this paper we describe a system for creating

and exposing relationships between documents: a

user’s interaction with digital objects (like docu-

ments) is interpreted as links – to be discovered

and maintained by the system. Such relationships

are created automatically, requiring no priming

by the user. Using a very simple set of heuristics,

we demonstrate the uniquely useful relationships

that can be established between documents that

have been touched by the user. Furthermore, this

mechanism for relationship building is media ag-

nostic, thus discovering relationships that would

not be found by conventional content based ap-

proaches. We describe a proof-of-concept im-

plementation of this basic idea and discuss a

couple of natural expansions of the scope of user

activity monitoring.

INTRODUCTION

Information overload is a severe challenge to

both overall productivity and one’s sense of per-

sonal accomplishment. A true and tested way to

mitigate the problem is to organize and cluster

the information. However, few people are good

at keeping their files organized, and even for

those there are sometimes a conflict between the

organization principle and the actual needs; for

instance, the same document belongs to several

non-overlapping categories, or the categories

erode and change over time. And for the rest of

us, there is always a problem of finding the

proper place to store the document when we are

in a rush, and re-finding what we prematurely

categorized.

In recent years we have seen different approaches

to help people get the benefits of organized

document storage without requiring them to do

all the work themselves. Techniques might rely

on some inherent or emergent structure in the

documents, automatically discovered by parsing

the documents. Relation building based on

content have severe limitations: most of our

content analysis tools are limited to text, but

many documents today are not textual, and re-

lations that matters to users may not be only

those of categorical similarity. Further, the no-

tion of document is growing to include things

like data-driven web pages that can change on

each visit and generally cause problems for

content analysis approaches.

Usage tracking offers a different approach: we

look at the user’s behavior – at how the user is

handling the digital material – and we build the

relations from there.

THE IVAN APPROACH
We1

designed and implemented the Ivan system

to discover and visualize relations among

documents. The point of departure is that many

of those relationships are reflected in the ways

she works with information. That is, the

activity of doing a task directly reflects the

relationship patterns in information. In this

way the user interaction itself becomes a link

to be discovered and maintained by the system.

Thus, Ivan can improve life for the information

worker in two ways, (1) by helping her get

back to clusters of documents that are used re-

peatedly, and (2) by offloading parts of the

mental work that goes into to (re-) establishing

and maintaining key task/document rela-

tionships.

In brief, Ivan monitors the user’s activity, tak-

ing particular notice when documents are up

on the screen together, when the user switches

back and forth between some of them, or when

the user cuts, copies and pastes from one

document to another.

Document relationships and usage are derived

from raw interaction data. Algorithms were developed to calculate

and adjust the strengths of such relationships between documents

serving a user interface that suggests related documents.

Our approach is best characterized as a blend of recommendation

systems like Amazon’s book recommendations: “when you previ-

ously used this document you also looked at these documents,”

1

The work reported here was performed while the first author worked at Microsoft.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific permission

and/or a fee.

IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001

389

and Google’s page ranking [2]: “this document is one that you

have used so much or so little with other open documents.”

It is important to note that the captured usage data are generic in

several senses of the word. They are application agnostic: we do

not need privileged access to the individual applications as long as

we can monitor the underlying system events. And they are also

media agnostic, as opposed to most strategies for determining

relevance and relatedness that establish the relations as a deriva-

tive of some sort of similarity in content or meta-data, e.g., Hay-

stack [1] or Stuff I Have Seen [4].

Also, we do not attempt to make extensive assumptions about

what the tasks a user might be engaged in that again might trigger

the use of related documents. In this aspect we differ from past

work on behavioral modeling, like [7], and usage-tracking systems

like Lumiere [5], TaskTracer [3] and ActivityExplorer [6]. Instead

we are adopting a radical behaviorist approach in the sense that it

is of no consequence why the user might use two documents in

timely proximity; we just note the fact that she does – assuming

that she might later find it useful to be served (information about)

documents that were used together regardless of whether they “be-

long” to a single task or several.

It is important to note that while this prototype was tightly scoped

to demonstrate the feasibility of a pure activity based approach, it

can be made to work alongside content-based approaches as we

see them applied in desktop search and like.

THE IVAN SYSTEM
The Ivan system can present itself to the user as a simple side

panel on the desktop with items representing open and related

documents, as shown in Figure 1. While relation-focused graph

visualization might be superior for displaying this kind of relation-

ships, we chose to focus on proving the concept of relationship

building. Also, the side panel requires little to no training and

learning, we use it for our examples.

Whenever the user opens a document (through the file explorer or

from an application menu), a corresponding item will appear in the

side panel. Along with it will appear items for other documents

that were previously used concurrently with the one just opened.

At any one time, the panel will show open items and items related

to open items. The items are ordered based on their strength rela-

tive to any open document.

Looking at the items in the sample side panel shown in Figure 1,

the darker background color of an item signifies an open docu-

ment, the one in focus being the darkest; and white background

color signifies a related unopened document. Clicking on an item

will cause the system to open the corresponding document (if it

was not already open) and bring it into focus; the list of items in

the side panel will be recalculated as a result.

TECHNICAL DESCRIPTION
The Ivan implementation was tightly scoped to highlight the

unique aspects of an activity-based approach, i.e., establishing

meaningful relationships by interpreting user activity as links.

The goal was to serve related documents to the user where the re-

lationships are functions of prior user activity. Relatedness in this

context is defined through the usage history, for instance,

• Documents are open or active at the same time or in close

timely proximity

• Documents are interchangeably brought to focus (“clicking

back and forth”)

• Content is exchanged between documents, with copy and

paste operations.

Realizing that a production system would need to reflect a much

more carefully researched and designed concept of “a document”,

we nevertheless decided for simplicity in this initial implementa-

tion. We apply a pragmatic criterion: a document is something that

can be shown in a window and usually lives in a named file in the

file system. That works well in most cases, like spreadsheets, pho-

tos, CAD drawings, but breaks when what is seen on screen does

not correspond to a named file: e-mail messages, server based web

pages, database views. We also decided to support only static

pages, leaving handling of dynamic pages (both the pages that are

essentially database views and those that are on-the-fly calcula-

tions) for more thorough design considerations. Although for these

types of special pages the activity based approach would have less

trouble establishing a relationship because the critical relation in-

formation would be available – the user’s activity.

System Architecture and Implementation

The system architecture of Ivan is an interchangeable UI with two

major processing mechanisms underneath: (1) Activity capture,

and (2) Relationship building. The side panel shown in Figure 1

can easily be replaced with other UIs, or the mechanism can be

embedded in other applications, like desktop search.

The technical interface between the two processing components is

a stream of events, composed of the following event types: Create

document; Open document; Close document; Save document;

Save document as; Copy/Cut material; Paste material; Mouse

Click/Double-Click.

Event capture and processing
The event capture mechanism is designed to be “application ag-

nostic”, i.e., it is strictly generic with respect to the applications in

the sense that it relies only on user actions in the window system

interface. A less generic approach might have utilized adapters for

major applications, possibly enabling more complex and task

based activity capture; but it would have left us with a solution

that would be much more vulnerable to change outside our domain

of control.

Activity Data from Message Spying

Since we are interested in user actions over time, we need to un-

derstand how stored documents might relate to the windows on the

screen. We capture events by “spying” on the messages sent be-

tween the applications and the two essential OS components, the

window manager and file system. Message spying tools are built

into most operating systems, like Microsoft’s Active Accessibility

and Filespy for file system instrumentation.

Divide between File System and Window System
There is a sharp divide between the stored and the displayed data

in today’s computing environment, and this divide is entirely

managed by the application. Window manager components may

provide information about what is happening within and between

windows on the screen, but it is basically oblivious to the content

that is being displayed and manipulated. This information is

known by the file system. Thus, the major work consists of syn-

chronizing and reconciling between the content in a window and

which file in the file system is most related to that content.

390

Listening to window messages, we first have to recognize and dis-

card events from a multitude of windows that only exist to provide

meta-information (like alerts and dialogs). Afterwards we are left

with more or less one window per document, with a couple major

exceptions. First, some applications provide the user with the op-

tion of multiple views on the same document, each view carried in

its own window. Second, some recent UI styles with dock-able or

tabbed windowpanes can make the detailed user activity opaque to

this type of monitoring. Correlation with the file system allows us

to resolve most cases, but as the concept of “a document” is

blurred this will be a problem that grows.

Analyzing the event streams

Even with careful message spying, there are events we do not see

when monitoring at the window manager level, for instance all the

events that are invoked from within an application through the

menus. Since action like these can be essential to understanding

what the user is doing, we need to take special measures to derive

them. We are able to derive most of the detailed interaction di-

rectly or from correlation of events from the three monitored com-

ponents (window manager, clipboard and the file system). When

that fails we revert to doing screen content comparisons through

the Accessibility API. For instance, in the current implementation

we derive the Save and Save As… episodes from a combination of

file system events and changes in the windows. Monitoring the

clipboard captures Cut and Copy episodes, and Paste episodes are

determined through analysis of changes in window contents.

As soon as a window/file binding has been established we monitor

the event stream for each document and ascertain that only a well-

formed stream of events are being passed on to the relationship

builder. The check is done through a simple state machine de-

signed with some tolerance and recovery capability.

Relationship Building

The relationships are between documents. Our concept of a docu-

ment includes any document-like entity, i.e., traditional docu-

ments, spreadsheets, pictures, messages, and web pages.

Relations
We focus on symmetrical relationships for pairs of documents.

There is no technical obstacle to including asymmetrical relations

and relations between more than two documents, however, they

are not required by the use scenarios considered here.

Relationships between documents are established when a docu-

ment is opened and there are already other documents open. Ini-

tially a relation is tentative; this is reflected in a low setting of the

relation strength. A relation between two documents is strength-

ened when the user performs actions that involve both documents,

like cut, copy, and paste, and clicking back and forth between

them, and when they are subsequently open together.

Heuristics for Strength of Relationships
The most important determinant of strength is time proximity in

use. A relation is created as soon as two documents are open

within the same time frame (a user setting, default setting is that

there is a moment when both documents are open). The relation is

initially assigned the value 1, and over its lifetime it may move in

the interval of 1 to 10.

The strength of established relations changes over time as a direct

result of user actions (usage triggered contributions), as well as re-

lation management operations such as “fading” (automatic de-

creases) and “confirmation” (usage triggered adjustments). Any

user action on a document will cause a recalculation of strength

between this document and all other documents it is related to.

The calculation takes place in several steps: 1) calculate fading

since last use; 2) calculate contribution from current event; 3) cal-

culate any confirmation effect, 4) adjust strength to fit into value

range; 5) adjust strength to equalize across relations.

Fading happens when a relation remains unused (lack of confirma-

tion) for a while. Confirmation happens when the user activates a

proposed relation, e.g., clicks on a suggested related document, or

when two documents are repeatedly brought up together. As

events of the same type occur repeatedly on a particular relation,

we adjust the effect of the event on the strength. In general, we de-

fine two formulas for each event type: a “first occurrence” formula

and a “subsequent occurrence” formula.

We impose limitation on how much the strength can grow and

shrink: we limit the strength range to 1-10, and we apply a simple

logarithmic mapping to keep values within.

EVALUATION

The primary purpose of the Ivan implementation was to gauge if

simple and raw user activity data could indeed become useful

links between documents. In this section we provide an evaluation

of technical feasibility and usefulness of the approach.

A handful of people used the system over a couple of months,

providing log data, ongoing design feedback and final assessment

of the potential usefulness of relationships from user activity

tracking. There was a general agreement that activity linking

among documents is helpful.

False Positives or Rich Associations
At the outset we were worried about the pervasiveness of multi-

tasking and not being able to distinguish between tasks that the

documents were used in, thus creating false positives (from a task

based point of view) in the set of related documents. During initial

use of the system, it turned out to be much less of a problem, per-

haps even a feature: we are showing documents that are related in

time and interaction, not necessarily task organized.

What we see here is an example of how we mentally organize

complex information: associations such as time, place and other

contextual dimensions can play as important a role as logical

structure and categories.

Document Types Based on Usage
During initial use of the system we noticed that certain documents

did not get registered as the users would prefer, for instance, docu-

ments used for reference were never or very seldom changed.

Thus they got a lower rating on relatedness as time went by (fad-

ing). It seemed like there should be different kinds of usage.

That led us to define document types based on usage patterns and

incorporate that into our algorithms. We can identify reference

documents by monitoring the usage pattern over time: long time

on display, frequent visibility or focusing of the window, and

minimal pasting or typing into the document are indicators of a

reference document. Thus, in case of reference documents (and

thereby the relations they are part of), we suspend the calculation

of fading. Resulting from the first couple weeks of use of the sys-

tem, we identified four different usage based categories:

391

• Reference documents

• Frequently used documents

• Transient documents

• Other documents.

The metric used for categorization is based on the amount of user

activity in a document, i.e. accumulated and average time a docu-

ment has been open and visible to the user. This very simplistic

usage metric can easily be improved and also expanded to include

calculations that take rhythmic usage patterns into consideration. It

should be noted that this metric, just like the usage-tracked rela-

tions, is independent on the specific content of the documents.

FUTURE DIRECTIONS FOR USAGE TRACKING

While we were able to establish and adjust document relationships

in a way that resonated with the users concepts of relatedness, we

also realize that there are severe challenges to pulling the right in-

formation from the windows and file system.

Desktop or cloud

We may envisage other user activity monitoring techniques to

come looking in two different directions. First, we can look for

platform support at the desktop, hoping that operating system de-

signers will recognize the usefulness of activity data and integrate

support of secure, non-invasive monitoring. Second, leaving the

desktop behind to consider the ubiquitous computing future, in

“the cloud” of information access it will likely be much easier to

harvest a rich activity event stream in that environment.

Search and Organization
We see two very different potential application areas of our usage

based relationships: (1) ranking or narrowing results from other

search approaches; and (2) widening the search basis by suggest-

ing related documents for content based search approaches. As

soon as we consider an integrated approach we are faced with the

question of how to weigh different filter metrics. We are particu-

larly eager to find a “peaceful” coexistence of our usage based ap-

proach and the prevalent Date/Time ranking most used today.

While the focus in Ivan was on the relationships between docu-

ments, we recognized that the documents themselves have inter-

esting qualities based on the user activity “on them”, for instance,

the length of time a document is open; the amount of change that

takes place on a document, and its role within a larger set of active

documents. Tracking the activity on a document (e.g., the type of

activity, the amount of activity) can, in its simplest form, be used

to flag documents in existing folder views; we can add

read/unread and edited/unedited flags. As we develop better usage

classifications of documents we can provide the option to sort on

usage type of document.

Other usage applications

By leveraging the relationships between documents, we can ex-

tend text search beyond just what is in the focused window in or-

der to infer additional topics that might be of interest and to target

ads accordingly. This combination of content and usage monitor-

ing is similar to the search scenario mentioned above.

The area of knowledge management and leveraging the “tribal”

knowledge around workflow currently relies on manual documen-

tation of process and presents itself as another area that could

benefit from automatically gathered usage information. The idea is

that through tracking the actions a user takes, a basic workflow

template can be created.

With a robust mechanism for tracking usage we can extend the

scenarios beyond document management into processes. Perhaps

the scenario is rather futuristic, but assume for a moment that our

applications were componentized in a way that, when using cer-

tain features within an application, the user would establish paths

or patterns of usage. These patterns can be used to recompose ap-

plications and populate them with functionality based on the usage

patterns.

CONCLUSIONS
In this project we saw how a simple proof of concept prototyping

revealed some technical challenges (the difficult of matching file

system events with window events), while also allowing us to get

a first sense of the usefulness of the approach (users’ immediate

grasp of the concept, confirmation of benefit assumptions).

The technical challenge to obtain a reliable and non-invasive

stream of user interaction events needs be addressed. While wait-

ing for the desktop operating systems to accommodate our needs,

we also suggest turning to a promising alternative in the web ap-

plication and services: with a rapidly increasing range of web-

based application services (such as various Live services, Groove,

Google apps, Salesforce.com) we may some day no longer need to

bother about the desktops.

Looking ahead we see activity based linking as an interesting ad-

ditional source of data being available for numerous improve-

ments in both functionality and user experience.

ACKNOWLEDGMENT

This research was carried out as part of a project in the Office of

the CTO, Microsoft. The authors also thank Jeanine Spence for

unwavering support and contributions.

REFERENCES

1. Adar, E., Kargar, D. and Stein, L.A., Haystack: Per-User Infor-

mation Environments. In Proc. CIKM'99, (1999), 413-422.

2. Brin, S., and Page, L., The Anatomy of a Large-Scale Hypertex-

tual Web Search Engine. In Computer Networks 30(1-7): 107-

117 (1998)

3. Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin,

M., Li, L. and Herlocker, J., TaskTracer: A Desktop Environ-

ment to Support Multi-tasking Knowledge Workers. In Proc.

IUI’05. ACM Press 2005, 75-82.

4. Dumais, S.T., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R. and

Robbins, D.C., Stuff I've Seen: A System for Personal Informa-

tion Retrieval and Re-Use. In Proc. SIGIR'03, (2003), 72-79.

5. Horvitz, E., J. Breese, D. Heckerman, D. Hovel, K. Rommelse,

The Lumière Project: Bayesian User Modeling for Inferring the

Goals and Needs of Software Users. In Proceedings of the Four-

teenth Conference on Uncertainty in Artificial Intelligence.

Morgan Kaufmann, 1998.

6. Millen, D.R., M.J. Muller, Werner Geyer, Eric Wilcox, Beth

Brownholtz. Understanding users and usage patterns: Patterns

of media use in an activity-centric collaborative environment. In

Proc. CHI 2005 ACM Press, 2005.

7. Oard, D. W., and Kim, J., Modeling Information Content Using

Observable Behavior. In Proceedings of the 64 Annual Meeting

of the American Society for Information Science and Technol-

ogy, USA, 2001.

392

